Optimal critical mass in the two dimensional Keller-Segel model in R
نویسندگان
چکیده
The Keller-Segel system describes the collective motion of cells that are attracted by a chemical substance and are able to emit it. In its simplest form it is a conservative driftdiffusion equation for the cell density coupled to an elliptic equation for the chemo-attractant concentration. It is known that, in two space dimensions, for small initial mass there is global existence of classical solutions and for large initial mass blow-up occurs. In this note we complete this picture and give an explicit value for the critical mass when the system is set in the whole space. Masse critique optimale pour le modèle de Keller-Segel dans R Résumé. Le système de Keller-Segel décrit le mouvement collectif de cellules attirées par une substance chimique et qui sont capables de l’émettre. Dans sa forme la plus simple, il s’agit d’une équation de dérive-diffusion pour la densité de cellules, couplée à une équation elliptique pour la concentration de chémo-attracteur. Il est bien connu qu’en deux dimensions, il y a existence pour des masses petites et explosion pour des masses grandes. Dans cette note nous complétons ce résultat en donnant une expression de la masse critique dans le cas où le problème estposé dans tout l’espace. Version française abrégée Le système de Keller et Segel décrit le mouvement collectif de cellules (bactéries ou amibes), de densité n(x, t), attirées par une force induite par une substance chimique, le chémo-attracteur, de concentration c(x, t), qu’elles émettent elles-même ([10, 13, 11, 15, 8]). Dans sa forme la plus simple, ce système s’écrit :
منابع مشابه
ar X iv : 0 71 2 . 31 69 v 1 [ m at h . A P ] 1 9 D ec 2 00 7 The parabolic - parabolic Keller - Segel model in R 2 ∗
This paper is devoted mainly to the global existence problem for the two-dimensional parabolicparabolic Keller-Segel in the full space. We derive a critical mass threshold below which global existence is ensured. Using carefully energy methods and ad hoc functional inequalities we improve and extend previous results in this direction. The given threshold is supposed to be the optimal criterion,...
متن کاملTwo-dimensional Keller-segel Model: Optimal Critical Mass and Qualitative Properties of the Solutions
The Keller-Segel system describes the collective motion of cells which are attracted by a chemical substance and are able to emit it. In its simplest form it is a conservative drift-diffusion equation for the cell density coupled to an elliptic equation for the chemo-attractant concentration. It is known that, in two space dimensions, for small initial mass, there is global existence of solutio...
متن کاملQualitative behavior of a Keller-Segel model with non-diffusive memory
In this paper a one-dimensional Keller-Segel model with a logarithmic chemotactic-sensitivity and a non-diffusing chemical is classified with respect to its long time behavior. The strength of production of the non-diffusive chemical has a strong influence on the qualitative behavior of the system concerning existence of global solutions or Dirac-mass formation. Further, the initial data play a...
متن کاملKeller-Segel, Fast-Diffusion and Functional Inequalities
We will show how the critical mass classical Keller-Segel system and the critical displacement convex fast-diffusion equation in two dimensions are related. On one hand, the critical fast diffusion entropy functional helps to show global existence around equilibrium states of the critical mass Keller-Segel system. On the other hand, the critical fast diffusion flow allows to show functional ine...
متن کاملLarge mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis.
In two space dimensions, the parabolic-parabolic Keller-Segel system shares many properties with the parabolic-elliptic Keller-Segel system. In particular, solutions globally exist in both cases as long as their mass is less than a critical threshold M(c). However, this threshold is not as clear in the parabolic-parabolic case as it is in the parabolic-elliptic case, in which solutions with mas...
متن کامل